Characterization of Planar Cubic Alternative curve

نویسندگان

  • Azhar Ahmad
  • R. Gobithasan
  • Jamaludin Md. Ali
چکیده

In this paper, we analyze the planar cubic Alternative curve to determine the conditions for convex, loops, cusps and inflection points. Thus cubic curve is represented by linear combination of three control points and basis function that consist of two shape parameters. By using algebraic manipulation, we can determine the constraint of shape parameters and sufficient conditions are derived which ensure that the curve is a strictly convex, loops, cusps and inflection point. We conclude the result in a shape diagram of parameters. The simplicity of this form makes characterization more intuitive and efficient to compute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capturing Outlines of Planar Generic Images by Simultaneous Curve Fitting and Sub-division

In this paper, a new technique has been designed to capture the outline of 2D shapes using cubic B´ezier curves. The proposed technique avoids the traditional method of optimizing the global squared fitting error and emphasizes the local control of data points. A maximum error has been determined to preserve the absolute fitting error less than a criterion and it administers the process of curv...

متن کامل

Approximate convolution with pairs of cubic Bézier LN curves

In this paper we present an approximation method for the convolution of two planar curves using a pair of two cubic Bézier curves with linear normals (LN). We characterize the necessary and sufficient conditions for two compatible cubic Bézier LN curves to have the same linear normal map. Using this characterization, we obtain the cubic spline approximation of the convolution curve. As illustra...

متن کامل

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

Computing real inflection points of cubic algebraic curves

Shape modeling using planar cubic algebraic curves calls for computing the real inflection points of these curves since inflection points represents important shape feature. A real inflection point is also required for transforming projectively a planar cubic algebraic curve to the normal form, in order to facilitate further analysis of the curve. However, the naive method for computing the inf...

متن کامل

Shape Control of Cubic H - Bézier Curve by Moving Control Point ?

This paper considers the shape control of the cubic H-Bézier curve, which can represent hyperbolas and catenaries accurately. We fix all the control points while let one vary. The locus of the moving control point that yields a cusp on the cubic H-Bézier curve is a planar curve; The tangent surface of the planar curve is the locus of the positions of the moving control point that yield inflecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.7848  شماره 

صفحات  -

تاریخ انتشار 2013